Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Signal Transduct Target Ther ; 8(1): 197, 2023 05 10.
Article in English | MEDLINE | ID: covidwho-2315076

ABSTRACT

The ongoing global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused devastating impacts on the public health and the global economy. Rapid viral antigenic evolution has led to the continual generation of new variants. Of special note is the recently expanding Omicron subvariants that are capable of immune evasion from most of the existing neutralizing antibodies (nAbs). This has posed new challenges for the prevention and treatment of COVID-19. Therefore, exploring broad-spectrum antiviral agents to combat the emerging variants is imperative. In sharp contrast to the massive accumulation of mutations within the SARS-CoV-2 receptor-binding domain (RBD), the S2 fusion subunit has remained highly conserved among variants. Hence, S2-based therapeutics may provide effective cross-protection against new SARS-CoV-2 variants. Here, we summarize the most recently developed broad-spectrum fusion inhibitors (e.g., nAbs, peptides, proteins, and small-molecule compounds) and candidate vaccines targeting the conserved elements in SARS-CoV-2 S2 subunit. The main focus includes all the targetable S2 elements, namely, the fusion peptide, stem helix, and heptad repeats 1 and 2 (HR1-HR2) bundle. Moreover, we provide a detailed summary of the characteristics and action-mechanisms for each class of cross-reactive fusion inhibitors, which should guide and promote future design of S2-based inhibitors and vaccines against new coronaviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Amino Acid Sequence , Spike Glycoprotein, Coronavirus , Peptides/genetics
2.
Front Immunol ; 13: 820336, 2022.
Article in English | MEDLINE | ID: covidwho-1933641

ABSTRACT

The continuous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) around the world has raised unprecedented challenges to the human society. Antibodies and nanobodies possessing neutralization activity represent promising drug candidates. In this study, we report the identification and characterization of a potent SARS-CoV-2 neutralizing nanobody that targets the viral spike receptor-binding domain (S-RBD). The nanobody, termed as Nb-007, engages SARS-CoV-2 S-RBD with the two-digit picomolar binding affinity and shows outstanding virus entry-inhibition activity. The complex structure of Nb-007 bound to SARS-CoV-2 S-RBD reveals an epitope that is partially overlapping with the binding site for the human receptor of angiotensin-converting enzyme 2 (ACE2). The nanobody therefore exerts neutralization by competing with ACE2 for S-RBD binding, which is further ascertained by our in-vitro biochemical analyses. Finally, we also show that Nb-007 reserves promising, though compromised, neutralization activity against the currently-circulating Delta variant and that fusion of the nanobody with Fc dramatically increases its entry-inhibition capacity. Taken together, these data have paved the way of developing Nb-007 as a drug-reserve for potential treatment of SARS-CoV-2 related diseases.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus
3.
Emerg Microbes Infect ; 11(1): 1920-1935, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1908682

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and related sarbecoviruses enter host cells by receptor-recognition and membrane-fusion. An indispensable step in fusion is the formation of 6-helix bundle by viral spike heptad repeats 1 and 2 (HR1 and HR2). Here, we report the construction of 5-helix bundle (5HB) proteins for virus infection inhibition. The optimal construct inhibits SARS-CoV-2 pseudovirus entry with sub-micromolar IC50. Unlike HR2-based peptides that cannot bind spike in the pre-fusion conformation, 5HB features with the capability of binding to pre-fusion spike. Furthermore, 5HB binds viral HR2 at both serological- and endosomal-pH, highlighting its entry-inhibition capacity when SARS-CoV-2 enters via either cell membrane fusion or endosomal route. Finally, we show that 5HB could neutralize S-mediated entry of the predominant SARS-CoV-2 variants and a wide spectrum of sarbecoviruses. These data provide proof-of-concept evidence that 5HB might be developed for the prevention and treatment of SARS-CoV-2 and other emerging sarbecovirus infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Hydrogen-Ion Concentration , Membrane Glycoproteins/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Viral Envelope Proteins/metabolism , Virus Internalization
4.
Nat Commun ; 13(1): 2028, 2022 04 19.
Article in English | MEDLINE | ID: covidwho-1805608

ABSTRACT

Dysfunctional immune responses contribute critically to the progression of Coronavirus Disease-2019 (COVID-19), with macrophages as one of the main cell types involved. It is urgent to understand the interactions among permissive cells, macrophages, and the SARS-CoV-2 virus, thereby offering important insights into effective therapeutic strategies. Here, we establish a lung and macrophage co-culture system derived from human pluripotent stem cells (hPSCs), modeling the host-pathogen interaction in SARS-CoV-2 infection. We find that both classically polarized macrophages (M1) and alternatively polarized macrophages (M2) have inhibitory effects on SARS-CoV-2 infection. However, M1 and non-activated (M0) macrophages, but not M2 macrophages, significantly up-regulate inflammatory factors upon viral infection. Moreover, M1 macrophages suppress the growth and enhance apoptosis of lung cells. Inhibition of viral entry using an ACE2 blocking antibody substantially enhances the activity of M2 macrophages. Our studies indicate differential immune response patterns in distinct macrophage phenotypes, which could lead to a range of COVID-19 disease severity.


Subject(s)
COVID-19 , Pluripotent Stem Cells , Humans , Lung , Macrophages , SARS-CoV-2
5.
Clin Infect Dis ; 73(11): e4154-e4165, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1559099

ABSTRACT

BACKGROUND: Children and older adults with coronavirus disease 2019 (COVID-19) display a distinct spectrum of disease severity yet the risk factors aren't well understood. We sought to examine the expression pattern of angiotensin-converting enzyme 2 (ACE2), the cell-entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the role of lung progenitor cells in children and older patients. METHODS: We retrospectively analyzed clinical features in a cohort of 299 patients with COVID-19. The expression and distribution of ACE2 and lung progenitor cells were systematically examined using a combination of public single-cell RNA-seq data sets, lung biopsies, and ex vivo infection of lung tissues with SARS-CoV-2 pseudovirus in children and older adults. We also followed up patients who had recovered from COVID-19. RESULTS: Compared with children, older patients (>50 years.) were more likely to develop into serious pneumonia with reduced lymphocytes and aberrant inflammatory response (P = .001). The expression level of ACE2 and lung progenitor cell markers were generally decreased in older patients. Notably, ACE2 positive cells were mainly distributed in the alveolar region, including SFTPC positive cells, but rarely in airway regions in the older adults (P < .01). The follow-up of discharged patients revealed a prolonged recovery from pneumonia in the older (P < .025). CONCLUSIONS: Compared to children, ACE2 positive cells are generally decreased in older adults and mainly presented in the lower pulmonary tract. The lung progenitor cells are also decreased. These risk factors may impact disease severity and recovery from pneumonia caused by SARS-Cov-2 infection in older patients.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 , Stem Cells , Aged , Child , Humans , Lung/cytology , Middle Aged , RNA-Seq , Retrospective Studies , Severity of Illness Index
6.
Theranostics ; 11(5): 2170-2181, 2021.
Article in English | MEDLINE | ID: covidwho-1016389

ABSTRACT

Introduction: An increasing number of children with severe coronavirus disease 2019 (COVID-19) is being reported, yet the spectrum of disease severity and expression patterns of angiotensin-converting enzyme 2 (ACE2) in children at different developmental stages are largely unknow. Methods: We analysed clinical features in a cohort of 173 children with COVID-19 (0-15 yrs.-old) between January 22, 2020 and March 15, 2020. We systematically examined the expression and distribution of ACE2 in different developmental stages of children by using a combination of children's lung biopsies, pluripotent stem cell-derived lung cells, RNA-sequencing profiles, and ex vivo SARS-CoV-2 pseudoviral infections. Results: It revealed that infants (< 1yrs.-old), with a weaker potency of immune response, are more vulnerable to develop pneumonia whereas older children (> 1 yrs.-old) are more resistant to lung injury. The expression levels of ACE2 however do not vary by age in children's lung. ACE2 is notably expressed not only in Alveolar Type II (AT II) cells, but also in SOX9 positive lung progenitor cells detected in both pluripotent stem cell derivatives and infants' lungs. The ACE2+SOX9+ cells are readily infected by SARS-CoV-2 pseudovirus and the numbers of the double positive cells are significantly decreased in older children. Conclusions: Infants (< 1 yrs.-old) with SARS-CoV-2 infection are more vulnerable to lung injuries. ACE2 expression in multiple types of lung cells including SOX9 positive progenitor cells, in cooperation with an unestablished immune system, could be risk factors contributing to vulnerability of infants with COVID-19. There is a need to continue monitoring lung development in young children who have recovered from SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Lung/cytology , Stem Cells/metabolism , Adolescent , Biopsy , Child , Child, Preschool , Female , Humans , Immune System , Infant , Infant, Newborn , Lung/virology , Male , RNA-Seq , Risk Factors , SARS-CoV-2 , SOX9 Transcription Factor/metabolism , Single-Cell Analysis , Stem Cells/virology
7.
Echocardiography ; 37(11): 1838-1843, 2020 11.
Article in English | MEDLINE | ID: covidwho-760126

ABSTRACT

PURPOSE: Lung ultrasonography (LU) is useful to assess lung lesions and variations at bedside. To investigate the results of LU in severe and critical patients with coronavirus disease 2019 (COVID-19), we performed a single-institution study to evaluate the related lung lesions and variations, and prophylactic strategies, in a large referral and treatment center. METHODS: We included 91 adult patients with severe and critical COVID-19, namely 62 males and 29 females, with an average age of 59 ± 11 years, who underwent LU. We collected the following patient information: sex, age, days in hospital, and days in ICU. In the ultrasound examinations, we recorded the presence of discrete B lines, confluent B lines, consolidation, pleural thickening, pleural effusion, and pneumothorax (PTX). RESULTS: Among the 91 severe and critical patients, 59 cases had scattered B lines, 56 cases had confluent B lines, 58 cases had alveolar-interstitial syndrome (AIS), 48 cases had lung consolidation, six cases had pleural thickening, 39 cases had pleural effusion (average depth of the pleural effusion: 1.0 ± 1.5 cm), and 20 patients developed PTX. In the Cox multivariate analysis, there were significant differences in age, hospitalization days, ICU days, and lung consolidation. CONCLUSION: Lung ultrasonography performed at the bedside can detect lung diseases, such as B lines, PTX, pulmonary edema, lung consolidation, pleural effusion, and variations of these findings. Our findings support the use of LU and measurements for estimating factors, and monitoring response to therapy in severe and critical COVID-19 patients.


Subject(s)
COVID-19/complications , Critical Care/methods , Lung Diseases/diagnostic imaging , Lung Diseases/etiology , Ultrasonography/methods , China , Critical Illness , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Retrospective Studies
8.
Res Sq ; 2020 Aug 20.
Article in English | MEDLINE | ID: covidwho-729814

ABSTRACT

Dysfunctional immune responses contribute critically to the progression of Coronavirus Disease-2019 (COVID-19) from mild to severe stages including fatality, with pro-inflammatory macrophages as one of the main mediators of lung hyper-inflammation. Therefore, there is an urgent need to better understand the interactions among SARS-CoV-2 permissive cells, macrophage, and the SARS-CoV-2 virus, thereby offering important insights into new therapeutic strategies. Here, we used directed differentiation of human pluripotent stem cells (hPSCs) to establish a lung and macrophage co-culture system and model the host-pathogen interaction and immune response caused by SARS-CoV-2 infection. Among the hPSC-derived lung cells, alveolar type II and ciliated cells are the major cell populations expressing the viral receptor ACE2 and co-effector TMPRSS2, and both were highly permissive to viral infection. We found that alternatively polarized macrophages (M2) and classically polarized macrophages (M1) had similar inhibitory effects on SARS-CoV-2 infection. However, only M1 macrophages significantly up-regulated inflammatory factors including IL-6 and IL-18, inhibiting growth and enhancing apoptosis of lung cells. Inhibiting viral entry into target cells using an ACE2 blocking antibody enhanced the activity of M2 macrophages, resulting in nearly complete clearance of virus and protection of lung cells. These results suggest a potential therapeutic strategy, in that by blocking viral entrance to target cells while boosting anti-inflammatory action of macrophages at an early stage of infection, M2 macrophages can eliminate SARS-CoV-2, while sparing lung cells and suppressing the dysfunctional hyper-inflammatory response mediated by M1 macrophages.

SELECTION OF CITATIONS
SEARCH DETAIL